- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Maldague, Dominique (3)
-
Anderson, Theresa C (1)
-
Christ, Michael (1)
-
Guth, Larry (1)
-
Pierce, Lillian B (1)
-
Wang, Hong (1)
-
Yung, Po-Lam (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Guth, Larry; Maldague, Dominique; Wang, Hong (, Journal of European Mathematical Society)We prove an l^2L^6 decoupling inequality for the parabola with constant .logR/c. In the appendix, we present an application to the sixth-order correlation of the integer solutions to x^2 +y^2 = m.more » « less
-
Christ, Michael; Maldague, Dominique (, Transactions of the American Mathematical Society)An inequality of Brascamp-Lieb-Luttinger and of Rogers states that among subsets of Euclidean space R d \mathbb {R}^d of specified Lebesgue measures, (tuples of) balls centered at the origin are maximizers of certain functionals defined by multidimensional integrals. For d > 1 d>1 , this inequality only applies to functionals invariant under a diagonal action of Sl ( d ) \operatorname {Sl}(d) . We investigate functionals of this type, and their maximizers, in perhaps the simplest situation in which Sl ( d ) \operatorname {Sl}(d) invariance does not hold. Assuming a more limited symmetry encompassing dilations but not rotations, we show under natural hypotheses that maximizers exist, and, moreover, that there exist distinguished maximizers whose structure reflects this limited symmetry. For small perturbations of the Sl ( d ) \operatorname {Sl}(d) –invariant framework we show that these distinguished maximizers are strongly convex sets with infinitely differentiable boundaries. It is shown that in the absence of partial symmetry, maximizers fail to exist for certain arbitrarily small perturbations of Sl ( d ) \operatorname {Sl}(d) –invariant structures.more » « less
An official website of the United States government

Full Text Available